Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 1 - Section 1.4 - Introduction to Identities - 1.4 Problem Set - Page 40: 49

Answer

$\sin\theta$ = $\frac{1}{2}$ $\cos\theta$ = - $\frac{\sqrt 3}{2}$ $\tan\theta$ = - $\frac{1}{\sqrt 3}$ $\sec\theta$ = - $\frac{2}{\sqrt 3}$ $\cot\theta$ = - $\sqrt 3$

Work Step by Step

Given $\csc\theta$ = 2 By reciprocal identity- $\sin\theta$ = $\frac{1}{\csc\theta}$ = $\frac{1}{2}$ We know from first Pythagorean identity that- $\cos\theta$ = ± $\sqrt (1-\sin^{2}\theta)$ Given $\csc\theta$ is positive and $\cos\theta$ is negative, therefore $\theta$ terminates in Q II. $\cos\theta$ = - $\sqrt (1-\sin^{2}\theta)$ substitute the value of $\sin\theta$- $\cos\theta$ = - $\sqrt (1-(\frac{1}{2})^{2})$ $\cos\theta$ = - $\sqrt (1-\frac{1}{4})$ $\cos\theta$ = - $\sqrt (\frac{4-1}{4})$ = $\sqrt (\frac{3}{4})$ $\cos\theta$ = - $\frac{\sqrt 3}{2}$ By ratio identity- $\tan\theta$ = $\frac{\sin\theta}{\cos\theta}$ Substituting the values of $\sin\theta$ and $\cos\theta$- $\tan\theta$ = $\frac{1/2}{ -\sqrt 3/2}$ = - $\frac{1}{\sqrt 3}$ From reciprocal identities- $\sec\theta$ = $\frac{1}{\cos\theta}$ = $\frac{1}{-\sqrt 3/2}$ = - $\frac{2}{\sqrt 3}$ $\cot\theta$ = $\frac{1}{\tan\theta}$ = $\frac{1}{-1/\sqrt 3}$ = - $\sqrt 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.