Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 1 - Section 1.4 - Introduction to Identities - 1.4 Problem Set - Page 41: 52

Answer

$\sin{\theta} = \dfrac{3\sqrt{10}}{10}$ $\cos{\theta} = -\dfrac{\sqrt{10}}{10}$ $\tan{\theta} =-3$ $\csc{\theta} =\dfrac{\sqrt{10}}{3}$ $\sec{\theta}=-\sqrt{10}$ $\cot{\theta} =-\dfrac{1}{3} $

Work Step by Step

$\sin{\theta} = \dfrac{3\sqrt{10}}{10}$ $\because \theta \in QII \hspace{20pt} \therefore \cos{\theta}$ is negative. $\cos{\theta} = - \sqrt{1-\sin^2{\theta}} = - \sqrt{1-\left(\dfrac{3\sqrt{10}}{10}\right)^2} = -\dfrac{\sqrt{10}}{10}$ $\tan{\theta} = \dfrac{\sin{\theta}}{\cos{\theta}} = -3$ $\csc{\theta} = \dfrac{1}{\sin{\theta}} = \dfrac{\sqrt{10}}{3}$ $\sec{\theta} = \dfrac{1}{\cos{\theta}} = -\sqrt{10}$ $\cot{\theta} = \dfrac{1}{\tan{\theta}}= -\dfrac{1}{3} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.