Answer
$\sin{\theta} = \dfrac{3\sqrt{10}}{10}$
$\cos{\theta} = -\dfrac{\sqrt{10}}{10}$
$\tan{\theta} =-3$
$\csc{\theta} =\dfrac{\sqrt{10}}{3}$
$\sec{\theta}=-\sqrt{10}$
$\cot{\theta} =-\dfrac{1}{3} $
Work Step by Step
$\sin{\theta} = \dfrac{3\sqrt{10}}{10}$
$\because \theta \in QII \hspace{20pt} \therefore \cos{\theta}$ is negative.
$\cos{\theta} = - \sqrt{1-\sin^2{\theta}} = - \sqrt{1-\left(\dfrac{3\sqrt{10}}{10}\right)^2} = -\dfrac{\sqrt{10}}{10}$
$\tan{\theta} = \dfrac{\sin{\theta}}{\cos{\theta}} = -3$
$\csc{\theta} = \dfrac{1}{\sin{\theta}} = \dfrac{\sqrt{10}}{3}$
$\sec{\theta} = \dfrac{1}{\cos{\theta}} = -\sqrt{10}$
$\cot{\theta} = \dfrac{1}{\tan{\theta}}= -\dfrac{1}{3} $