Answer
$\sin{\theta} =0.59$
$\cos{\theta} = -0.81$
$\tan{\theta} =-0.73$
$\csc{\theta} =1.69$
$\sec{\theta} = -1.24$
$\cot{\theta} =-1.37 $
Work Step by Step
$\sec{\theta} = -1.24$
$\cos{\theta} = \dfrac{1}{\sec{\theta}} = -\dfrac{1}{1.24} \approx -0.81$
$\because \theta \in QII \hspace{20pt} \therefore \sin{\theta}$ is positive.
$\sin{\theta} = \sqrt{1-\cos^2{\theta}} = - \sqrt{1-(-0.81)^2} \approx 0.59$
$\tan{\theta} = \dfrac{\sin{\theta}}{\cos{\theta}} = \dfrac{0.59}{-0.81} \approx -0.73$
$\csc{\theta} = \dfrac{1}{\sin{\theta}} = \dfrac{1}{0.59} \approx 1.69$
$\cot{\theta} = \dfrac{\cos{\theta}}{\sin{\theta}} = \dfrac{-0.81}{-0.59} \approx -1.37 $