Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 2 - Section 2.1 - Definition II: Right Triangle Trigonometry - 2.1 Problem Set - Page 61: 18

Answer

Required trigonometric functions are- $\sin A = \frac{1}{\sqrt 2}$ $\\csc A = \sqrt 2 $ $\\cos A = \frac{1}{\sqrt 2}$ $\\sec A = \sqrt 2 $ $\\tan A = 1$ $\\\cot A = 1$

Work Step by Step

Steps to Answer- From the given diagram of triangle ABC, we will use given information and Pythagoras Theorem to solve for 'c'- $c^{2} =a^{2} + b^{2}$ ( Pythagoras Theorem) $c^{2} = x^{2} + x^{2}$ $c^{2} = 2 x^{2}$ therefore $ c = x \sqrt 2$ Now we can write the required six T-functions of A using a =$ x$, $b= x$ and $ c =x\sqrt 2$ $\sin A = \frac{a}{c} = \frac{x}{x\sqrt 2} = \frac{1}{\sqrt 2}$ $\\csc A = \frac{c}{a} =\frac{x\sqrt 2}{x} = \frac{\sqrt 2}{1} = \sqrt 2 $ $\\cos A = \frac{b}{c} = \frac{x}{x\sqrt 2} = \frac{1}{\sqrt 2}$ $\\sec A = \frac{c}{b} =\frac{x\sqrt 2}{x} = \frac{\sqrt 2}{1} = \sqrt 2 $ $\\tan A = \frac{a}{b} = \frac{x}{x} = 1$ $\\\cot A = \frac{b}{a} = \frac{x}{x} = 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.