Answer
We know that
$$v_{0}=V_{\max }[\mathrm{S}] /\left(K_{M}+[\mathrm{S}]\right)$$
Therefore
$$v_{0} / V_{\max }=[\mathrm{S}] /\left(K_{M}+[\mathrm{S}]\right)$$
$$0.95=[\mathrm{S}] /\left(K_{M}+[\mathrm{S}]\right)$$
$$[\mathrm{S}]=0.95 K_{M}+0.95[\mathrm{S}]$$
$$0.05[\mathrm{S}]=0.95 K_{M}$$
$$[\mathrm{S}]=(0.95 / 0.05) K_{M}=19 K_{M}$$
Work Step by Step
We know that
$$v_{0}=V_{\max }[\mathrm{S}] /\left(K_{M}+[\mathrm{S}]\right)$$
Therefore
$$v_{0} / V_{\max }=[\mathrm{S}] /\left(K_{M}+[\mathrm{S}]\right)$$
$$0.95=[\mathrm{S}] /\left(K_{M}+[\mathrm{S}]\right)$$
$$[\mathrm{S}]=0.95 K_{M}+0.95[\mathrm{S}]$$
$$0.05[\mathrm{S}]=0.95 K_{M}$$
$$[\mathrm{S}]=(0.95 / 0.05) K_{M}=19 K_{M}$$