Chemistry 12th Edition

Published by McGraw-Hill Education
ISBN 10: 0078021510
ISBN 13: 978-0-07802-151-0

Chapter 3 - Mass Relationships in Chemical Reactions - Questions & Problems - Page 111: 3.85

Answer

(a)$$C_3H_8 + 5O_2\longrightarrow 3CO_2+4H_2O$$ (b) $482 \space g \space CO_2$

Work Step by Step

(a) 1. Balance the amount of carbons in each side: $$C_3H_8 + O_2\longrightarrow 3CO_2+H_2O$$ 2. Balance the amount of hydrogens in each side: $$C_3H_8 + O_2\longrightarrow 3CO_2+4H_2O$$ 3. Balance the amount of oxygens in each side: $$C_3H_8 + 5O_2\longrightarrow 3CO_2+4H_2O$$ - The equation is completely balanced. (b) 1. According to the balanced equation, each mole of propane $(C_3H_8)$ produces 3 moles of carbon dioxide: $$\frac{1 \space mole \space C_3H_8}{3 \space moles \space CO_2} \space and \space \frac{3 \space moles \space CO_2}{1 \space mole \space C_3H_8} $$ 2. Calculate the molar mass for carbon dioxide: $ CO_2 $ : ( 12.01 $\times$ 1 )+ ( 16.00 $\times$ 2 )= 44.01 g/mol 3. Use this information as conversion factors to find the amount of grams of $CO_2$ produced $$3.65 \space moles \space C_3H_8 \times \frac{3 \space moles \space CO_2}{1 \space mole \space C_3H_8} \times \frac{44.01 \space g \space CO_2}{1 \space moles \space CO_2} = 482 \space g \space CO_2$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.