Chemistry 12th Edition

Published by McGraw-Hill Education
ISBN 10: 0078021510
ISBN 13: 978-0-07802-151-0

Chapter 3 - Mass Relationships in Chemical Reactions - Questions & Problems - Page 111: 3.92

Answer

$$3.48 \times 10^3 \space g \space C_6H_{14} $$

Work Step by Step

1. Calculate the molar masses: $ C_2H_4 $ : ( 1.008 $\times$ 4 )+ ( 12.01 $\times$ 2 )= 28.05 g/mol $$ \frac{1 \space mole \space C_2H_4 }{ 28.05 \space g \space C_2H_4 } \space and \space \frac{ 28.05 \space g \space C_2H_4 }{1 \space mole \space C_2H_4 }$$ $ C_6H_{14} $ : ( 1.008 $\times$ 14 )+ ( 12.01 $\times$ 6 )= 86.17 g/mol $$ \frac{1 \space mole \space C_6H_{14} }{ 86.17 \space g \space C_6H_{14} } \space and \space \frac{ 86.17 \space g \space C_6H_{14} }{1 \space mole \space C_6H_{14} }$$ 2. Find the theoretical amount of reactant: $$ 481 \space g \space C_2H_4 \times \frac{1 \space mole \space C_2H_4 }{ 28.05 \space g \space C_2H_4 } \times \frac{ 1 \space mole \space C_6H_{14} }{ 1 \space mole \space C_2H_4 } \times \frac{ 86.17 \space g \space C_6H_{14} }{1 \space mole \space C_6H_{14} } = 1480 \space g \space C_6H_{14} $$ $$ necessary \space reactant =\frac{ 100\% \times theoretical \space reactant }{ percent \space yield }$$$$ necessary \space reactant =\frac{( 100 \%)\times ( 1480 \space g \space C_6H_{14} )}{ 42.5 \%} = 3.48 \times 10^3 \space g \space C_6H_{14} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.