Answer
$v_{min}=19.4\frac{m}{s}$
$v_{max}=19.5\frac{m}{s}$
Work Step by Step
$v_{fy}=0$
$g=-9.8\frac{m}{s^2}$
From $v_{fy}^2=v_{iy}^2+2a\Delta y$
$v_{iy}=\sqrt{v_{f}^2-2a\Delta y}$
$v_{iy}=\sqrt{0-2(-9.8\frac{m}{s^2})(0.95m)}$
$v_{iy}=18.6\frac{m}{s}$
$t=\frac{v_{fy}-v_{iy}}{a}=\frac{0-18.6\frac{m}{s}}{-9.8\frac{m}{s^2}}=1.9s$
$v_x=\frac{10.78m}{1.9s}=5.67\frac{m}{s}$
$v_x=\frac{11.22m}{1.9s}=5.91\frac{m}{s}$
$v_{min}=\sqrt{\big(18.6\frac{m}{s}\big)^2+\big(5.67\frac{m}{s}\big)^2}=19.4\frac{m}{s}$
$v_{max}=\sqrt{\big(18.6\frac{m}{s}\big)^2+\big(5.91\frac{m}{s}\big)^2}=19.5\frac{m}{s}$