Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 3 - Kinematics in Two Dimensions; Vectors - General Problems - Page 73: 71

Answer

$x_f=12.8m$ $\theta=-30.9^o$

Work Step by Step

$\Delta y=v_0 t+\dfrac{1}{2}at^2$ $0.65m=(12\frac{m}{s}\times \sin(35^o))t+\frac{1}{2}(-9.8\frac{m}{s^2})t^2$ $4.9\frac{m}{s^2}t^2-6.88\frac{m}{s}t+0.65m=0$ $t=0.102s$ $t=1.30s$ The ball reaches the height of 3.05m shortly after the shooter shoots the ball, so we need the larger time value. $x_f=x_i+v_{xi}t+\frac{1}{2}a_xt^2$ $x_f=0+12\frac{m}{s}(1.30s)+\frac{1}{2}(0)t^2$ $x_f=12.8m$ $\theta=\arctan\Big(\frac{v_{yi}-gt}{v_{xi}}\Big)=\arctan\Big(\frac{12\times \sin(35^o)-(9.8\frac{m}{s^2})(1.30s)}{12\times \cos(35^o)}\Big)=-30.9^o$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.