Mechanics of Materials, 7th Edition

Published by McGraw-Hill Education
ISBN 10: 0073398233
ISBN 13: 978-0-07339-823-5

Chapter 2 - Problems - Page 89: 2.33

Answer

(a) Brass-core: $$\sigma_{B} =140.6 \mathrm{MPa} $$ --- (b) Aluminum: $$ \sigma_{A} =93.8 \mathrm{MPa} $$

Work Step by Step

$$ \delta_{A} =\delta_{B}=\delta ; \quad P=P_{A}+P_{B} $$ $$\delta=\frac{P_{A} L}{E_{A} A_{A}} \text { and } \quad \delta=\frac{P_{B} L}{E_{B} A_{B}} $$ Therefore, $$ P_{A}=\left(E_{A} A_{A}\right)\left(\frac{\delta}{L}\right) ; P_{B}=\left(E_{B} A_{B}\right)\left(\frac{\delta}{L}\right) $$ Substituting, $$ P_{A}=\left(E_{A} A_{A}+E_{B} A_{B}\right)\left(\frac{\delta}{L}\right) $$ $$ \quad \in=\frac{\delta}{L}=\frac{P}{\left(E_{A} A_{A}+E_{B} A_{B}\right)} $$ $$\in=\frac{\delta}{L}=\frac{P}{\left(E_{A} A_{A}+E_{B} A_{B}\right)}$$ $$\in=\frac{ }{\left(70 \times 10^{9} \mathrm{Pa}\right)(0.06 \mathrm{m})(0.01 \mathrm{m})+\left(105 \times 10^{9} \mathrm{Pa}\right)(0.06 \mathrm{m})(0.04 \mathrm{m})}$$ $$\quad=1.33929 \times 10^{-3}$$ Now,$$\sigma=E \in$$ (a) Brass-core: $$\sigma_{B}=\left(105 \times 10^{9} \mathrm{Pa}\right)\left(1.33929 \times 10^{-3}\right)$$ $$\quad=1.40625 \times 10^{8} \mathrm{Pa}$$ $$\therefore\sigma_{B} =140.6 \mathrm{MPa} $$ --- (b) Aluminum: $$ \sigma_{A} =\left(70 \times 10^{9} \mathrm{Pa}\right)\left(1.33929 \times 10^{-3}\right) $$ $$ =9.3750 \times 10^{7} \mathrm{Pa} $$ $$\therefore \sigma_{A} =93.8 \mathrm{MPa} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.