Mechanics of Materials, 7th Edition

Published by McGraw-Hill Education
ISBN 10: 0073398233
ISBN 13: 978-0-07339-823-5

Chapter 2 - Problems - Page 89: 2.38

Answer

${\text { (a) }} $ $$ {} {P=287 \mathrm{kN}} $$ --- $ {\text { (b) }} $ $${} {\sigma_{b}=140.0 \mathrm{MPa}} $$

Work Step by Step

Let $P_a$ = Portion of axial force carried by shell and $P_b$ = Portion of axial force carried by core $$\delta=\frac{P_{a} L}{E_{a} A_{a}}, \quad$ or $\quad P_{a}=\frac{E_{a} A_{a}}{L} \delta$$ $$\delta=\frac{P_{b} L}{E_{b} A_{b}}, \quad$ or $\quad P_{b}=\frac{E_{b} A_{b}}{L} \delta$$ Thus $$P=P_{a}+P_{b}=\left(E_{a} A_{a}+E_{b} A_{b}\right) \frac{\delta}{L}$$ with $$A_{a}=\frac{\pi}{4}\left[(0.060)^{2}-(0.025)^{2}\right]=2.3366 \times 10^{-3} \mathrm{m}^{2}$$ $$ A_{b} =\frac{\pi}{4}(0.025)^{2}=0.49087 \times 10^{-3} \mathrm{m}^{2} $$ $$ P =\left[\left(70 \times 10^{9}\right)\left(2.3366 \times 10^{-3}\right)+\left(105 \times 10^{9}\right)\left(0.49087 \times 10^{-3}\right)\right] \frac{\delta}{L}=215.10 \times 10^{6} \frac{\delta}{L} $$ with $$ \delta =0.40 \mathrm{mm}, L=300 \mathrm{mm} $$ ${\text { (a) }} $ $$ {P=\left(215.10 \times 10^{6}\right) \frac{0.40}{300}=286.8 \times 10^{3} \mathrm{N}} $$ $$ {} {P=287 \mathrm{kN}} $$ --- $ {\text { (b) }} $ $$ {\sigma_{b}=\frac{P_{b}}{A_{b}}=\frac{E_{b} \delta}{L}=\frac{\left(105 \times 10^{9}\right)\left(0.40 \times 10^{-3}\right)}{300 \times 10^{-3}}=140 \times 10^{6} \mathrm{Pa}} $$ $${} {\sigma_{b}=140.0 \mathrm{MPa}} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.