Mechanics of Materials, 7th Edition

Published by McGraw-Hill Education
ISBN 10: 0073398233
ISBN 13: 978-0-07339-823-5

Chapter 2 - Problems - Page 89: 2.37

Answer

$\text{(a)}$ $$\sigma_{a}=65.1 \mathrm{MPa}$$ --- $\text{(b)}$ $$\delta=0.279 \mathrm{mm}$$

Work Step by Step

Let $\quad P_a$ = Portion of axial force carried by shell. $\quad \quad P_b$ = Portion of axial force carried by core. $$\delta=\frac{P_{a} L}{E_{a} A_{a}}, \quad \ or\ \quad P_{a}=\frac{E_{a} A_{a}}{L} \delta$$ $$\delta=\frac{P_{b} L}{E_{b} A_{b}}, \quad \ or \ \quad P_{b}=\frac{E_{b} A_{b}}{L} \delta$$ Thus $$P=P_{a}+P_{b}=\left(E_{a} A_{a}+E_{b} A_{b}\right) \frac{\delta}{L}$$ with $$A_{a}=\frac{\pi}{4}\left[(0.060)^{2}-(0.025)^{2}\right]=2.3366 \times 10^{-3} \mathrm{m}^{2}$$ $$A_{b}=\frac{\pi}{4}(0.025)^{2}=0.49087 \times 10^{-3} \mathrm{m}^{2}$$ $$P=\left[\left(70 \times 10^{9}\right)\left(2.3366 \times 10^{-3}\right)+\left(105 \times 10^{9}\right)\left(0.49087 \times 10^{-3}\right)\right] \frac{\delta}{L}$$ $$P=215.10 \times 10^{6} \frac{\delta}{L}$$ Strain: $$\varepsilon=\frac{\delta}{L}=\frac{P}{215.10 \times 10^{6}}=\frac{200 \times 10^{3}}{215.10 \times 10^{6}}=0.92980 \times 10^{-3}$$ $\text{(a)}$ $$\sigma_{a}=E_{a} \varepsilon=\left(70 \times 10^{9}\right)\left(0.92980 \times 10^{-3}\right)=65.1 \times 10^{\circ} \mathrm{Pa}$$ $$\sigma_{a}=65.1 \mathrm{MPa}$$ --- $\text{(b)}$ $$\delta=\varepsilon L=\left(0.92980 \times 10^{-3}\right)(300 \mathrm{mm})$$ $$\delta=0.279 \mathrm{mm}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.