Mechanics of Materials, 7th Edition

Published by McGraw-Hill Education
ISBN 10: 0073398233
ISBN 13: 978-0-07339-823-5

Chapter 2 - Problems - Page 89: 2.36

Answer

$$P=695 \mathrm{\ kips}$$

Work Step by Step

Allowable strain in each material: Steel:$$ \varepsilon_{s} =\frac{\sigma_{s}}{E_{s}}=\frac{20 \times 10^{3} \mathrm{psi}}{29 \times 10^{6} \mathrm{psi}}=6.8966 \times 10^{-4} $$ Concrete: $$ \varepsilon_{c} =\frac{\sigma_{c}}{E_{c}}=\frac{2.4 \times 10^{3} \mathrm{psi}}{4.2 \times 10^{6} \mathrm{psi}}=5.7143 \times 10^{-4} $$ Smaller value governs. $$ \varepsilon =\frac{\delta}{L}=5.7143 \times 10^{-4} $$ Let $\quad \quad P_c$ = Portion of load stand by concrete. $\quad \quad P_s$ = Portion of load stand by 6 steel rods. $$\delta=\frac{P_{c} L}{E_{c} A_{c}} \therefore \quad P_{c}=E_{c} A_{c}\left(\frac{\delta}{L}\right)=E_{c} A_{c} \epsilon$$ $$\delta=\frac{P_{s} L}{E_{s} A_{s}} \therefore \quad P_{s}=E_{s} A_{s}\left(\frac{\delta}{L}\right)=E_{s} A_{s} \epsilon $$ $$ A_{s}=6\left(\frac{\pi}{4}\right) d_{s}^{2}=\frac{6 \pi}{4} (1.125 \mathrm{in} .)^{2}=5.9641 \mathrm{in}^{2} $$ $$A_{c}=\left(\frac{\pi}{4}\right) d_{c}^{2}-A_{s}=\frac{\pi}{4}(18 \mathrm{in.})^{2}-5.9641 \mathrm{in}^{2}=2.4851 \times 10^{2} \mathrm{in}^{2} $$ $$P=P_{c}+P_{s}=E_{c} A_{c} \epsilon+E_{s} A_{s} \epsilon$$ $$P=\left[\left(4.2 \times 10^{6} \mathrm{psi}\right)\left(2.4851 \times 10^{2} \mathrm{in}^{2}\right)+\\\left(29 \times 10^{6} \mathrm{psi}\right)\left(5.9641 \mathrm{in}^{2}\right)\right]\left(5.7143 \times 10^{-4}\right)$$ $$P=6.9526 \times 10^{5} \mathrm{Jb}$$ $$\therefore P=695 \mathrm{\ kips}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.