Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version 8th Edition

Published by Wiley
ISBN 10: 1119080703
ISBN 13: 978-1-11908-070-1

Chapter 1 - Problems - Page 33: 1.46

Answer

(a) Calculate the density of the Mars at Martian atmosphere when $T=-50^{\circ} \mathrm{C}$ : $$ \rho_{\text {mars }}=\frac{p_{\text {mars }}}{R T_{\text {mars }}} $$ Here, the pressure at Mars is $p_{\max }$, the gas constant is $R$, the temperature at the surface of Mars is $T_{\text {mars }}$ As Gas constant value is equivalent to carbon dioxide, $R=188.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ Substitute, $900 \frac{\mathrm{N}}{\mathrm{m}^{2}}$ for $p_{\text {mars }}, 188.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ for $R, 223 \mathrm{~K}$ for $T$ $$ \begin{aligned} \rho_{\operatorname{mars}} &=\frac{900 \frac{\mathrm{N}}{\mathrm{m}^{2}}}{\left(188.9 \frac{\mathrm{J}}{\mathrm{kg} \cdot \mathrm{K}}\right)(223 \mathrm{~K})} \\ &=0.0214 \frac{\mathrm{kg}}{\mathrm{m}^{3}} \end{aligned} $$ Calculate the density of the earth: $$ \rho_{\text {earlh }}=\frac{p_{\text {earth }}}{R T_{\text {carth }}} $$ Here, the pressure at earth is $p_{\text {earth }}$, the gas constant is $R$, the temperature at the surface of Mars is $T_{\text {earth }}$ Gas constant of air $R=286.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ Substitute, $101.6 \times 10^{3} \frac{\mathrm{N}}{\mathrm{m}^{2}}$ for $p_{\text {mars }}, 188.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ for $R, 223 \mathrm{~K}$ for $T$ $$ \begin{aligned} \rho_{\operatorname{mars}} &=\frac{101.6 \times 10^{3} \frac{\mathrm{N}}{\mathrm{m}^{2}}}{\left(286.9 \frac{\mathrm{J}}{\mathrm{kg} \cdot \mathrm{K}}\right)(291 \mathrm{~K})} \\ &=1.22 \frac{\mathrm{kg}}{\mathrm{m}^{3}} \end{aligned} $$

Work Step by Step

(a) Calculate the density of the Mars at Martian atmosphere when $T=-50^{\circ} \mathrm{C}$ : $$ \rho_{\text {mars }}=\frac{p_{\text {mars }}}{R T_{\text {mars }}} $$ Here, the pressure at Mars is $p_{\max }$, the gas constant is $R$, the temperature at the surface of Mars is $T_{\text {mars }}$ As Gas constant value is equivalent to carbon dioxide, $R=188.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ Substitute, $900 \frac{\mathrm{N}}{\mathrm{m}^{2}}$ for $p_{\text {mars }}, 188.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ for $R, 223 \mathrm{~K}$ for $T$ $$ \begin{aligned} \rho_{\operatorname{mars}} &=\frac{900 \frac{\mathrm{N}}{\mathrm{m}^{2}}}{\left(188.9 \frac{\mathrm{J}}{\mathrm{kg} \cdot \mathrm{K}}\right)(223 \mathrm{~K})} \\ &=0.0214 \frac{\mathrm{kg}}{\mathrm{m}^{3}} \end{aligned} $$ Calculate the density of the earth: $$ \rho_{\text {earlh }}=\frac{p_{\text {earth }}}{R T_{\text {carth }}} $$ Here, the pressure at earth is $p_{\text {earth }}$, the gas constant is $R$, the temperature at the surface of Mars is $T_{\text {earth }}$ Gas constant of air $R=286.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ Substitute, $101.6 \times 10^{3} \frac{\mathrm{N}}{\mathrm{m}^{2}}$ for $p_{\text {mars }}, 188.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ for $R, 223 \mathrm{~K}$ for $T$ $$ \begin{aligned} \rho_{\operatorname{mars}} &=\frac{101.6 \times 10^{3} \frac{\mathrm{N}}{\mathrm{m}^{2}}}{\left(286.9 \frac{\mathrm{J}}{\mathrm{kg} \cdot \mathrm{K}}\right)(291 \mathrm{~K})} \\ &=1.22 \frac{\mathrm{kg}}{\mathrm{m}^{3}} \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.