Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version 8th Edition

Published by Wiley
ISBN 10: 1119080703
ISBN 13: 978-1-11908-070-1

Chapter 1 - Problems - Page 33: 1.47

Answer

Solution: Volume of the tank $=2 \mathrm{ft}^{3}$ Weight of gas $=0.3 \mathrm{lb}$ Pressure exerted by the gas, $P_{\text {gauge }}=12 \mathrm{psi}$ Considering atmospheric pressure, $P_{\text {atom }}=14.7$ psi Absolute pressure, $P_{\text {abs }}=P_{\text {atm }}+P_{\text {gauge }}$ $P_{\text {abs }}=12+14.7$ $P_{\text {abs }}=26.7 \mathrm{psi}$ Gas temperature $=80 \mathrm{~F}$ Converting Fahrenheit to Celsius, $$ \begin{array}{l} T_{c}=\left(\frac{5}{9}\right)\left(T_{f}-32^{\circ}\right) \\ T_{c}=\left(\frac{5}{9}\right)\left(80^{\circ}-32^{\circ}\right) \end{array} $$ $T_{c}=26.66^{\circ} \mathrm{C}$ Converting $\mathrm{C}$ to $\mathrm{K}$, $T=273+26.66$ $T=299.66 \mathrm{~K}$ Converting Kelvin to Rankin, $1 \mathrm{~K}=1.8^{\circ} \mathrm{R}$ But, $299.66 \mathrm{~K}=299.66 \times 1.8^{\circ} \mathrm{R}$ $T=539.388^{\circ} \mathrm{R}$ Mass of the gas $=\frac{\text { Weight }}{\text { Acceleration due to gravity }}$ $m=\frac{0.3}{32.2}$ $m=9.316 \times 10^{-3}$ slug Density of gas $=\frac{\text { Mass }}{\text { Volume }}$ $\rho=\frac{9.316 \times 10^{-3}}{2}$ Density of gas $(\rho)=4.658 \times 10^{-3}$ slug $/ \mathrm{ft}^{3}$ From the relation, $P=R T$ $26.7=4.658 \times 10^{-3} \times R \times 539.388$ $$ R=\frac{26.7}{4.658 \times 10^{-3} \times 539.388} $$ $R=10.626$ Converting inches to feet, $R=10.626 \times(12)^{2}$ $R=1530.28 \frac{\mathrm{lb}-\mathrm{ft}}{\text { slug }-{ }^{\circ} \mathrm{R}}$ So, from the table we can observe that the gas constant that we obtained is nearer to the gas constant of Oxygen rather than Helium. Hence, the gas in the closed tank is oxygen.

Work Step by Step

Solution: Volume of the tank $=2 \mathrm{ft}^{3}$ Weight of gas $=0.3 \mathrm{lb}$ Pressure exerted by the gas, $P_{\text {gauge }}=12 \mathrm{psi}$ Considering atmospheric pressure, $P_{\text {atom }}=14.7$ psi Absolute pressure, $P_{\text {abs }}=P_{\text {atm }}+P_{\text {gauge }}$ $P_{\text {abs }}=12+14.7$ $P_{\text {abs }}=26.7 \mathrm{psi}$ Gas temperature $=80 \mathrm{~F}$ Converting Fahrenheit to Celsius, $$ \begin{array}{l} T_{c}=\left(\frac{5}{9}\right)\left(T_{f}-32^{\circ}\right) \\ T_{c}=\left(\frac{5}{9}\right)\left(80^{\circ}-32^{\circ}\right) \end{array} $$ $T_{c}=26.66^{\circ} \mathrm{C}$ Converting $\mathrm{C}$ to $\mathrm{K}$, $T=273+26.66$ $T=299.66 \mathrm{~K}$ Converting Kelvin to Rankin, $1 \mathrm{~K}=1.8^{\circ} \mathrm{R}$ But, $299.66 \mathrm{~K}=299.66 \times 1.8^{\circ} \mathrm{R}$ $T=539.388^{\circ} \mathrm{R}$ Mass of the gas $=\frac{\text { Weight }}{\text { Acceleration due to gravity }}$ $m=\frac{0.3}{32.2}$ $m=9.316 \times 10^{-3}$ slug Density of gas $=\frac{\text { Mass }}{\text { Volume }}$ $\rho=\frac{9.316 \times 10^{-3}}{2}$ Density of gas $(\rho)=4.658 \times 10^{-3}$ slug $/ \mathrm{ft}^{3}$ From the relation, $P=R T$ $26.7=4.658 \times 10^{-3} \times R \times 539.388$ $$ R=\frac{26.7}{4.658 \times 10^{-3} \times 539.388} $$ $R=10.626$ Converting inches to feet, $R=10.626 \times(12)^{2}$ $R=1530.28 \frac{\mathrm{lb}-\mathrm{ft}}{\text { slug }-{ }^{\circ} \mathrm{R}}$ So, from the table we can observe that the gas constant that we obtained is nearer to the gas constant of Oxygen rather than Helium. Hence, the gas in the closed tank is oxygen.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.