Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version 8th Edition

Published by Wiley
ISBN 10: 1119080703
ISBN 13: 978-1-11908-070-1

Chapter 1 - Problems - Page 33: 1.45

Answer

Calculate the characteristics gas constant of nitrogen using the formula, $\mathrm{R}_{n}=\frac{\mathrm{R}}{\mathrm{M}}$ Here, $\mathrm{R}_{n}$ is the characteristics gas constant of nitrogen, $\mathrm{R}$ is universal gas constant and $\mathrm{M}$ is molecular weight of nitrogen. Substitute $8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ for $\mathrm{R}, 28 \mathrm{~kg} / \mathrm{kmol}$ for $\mathrm{M}$. $\mathrm{R}_{n}=\frac{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}}{28 \mathrm{~kg} / \mathrm{kmol}}$ $\mathrm{R}_{n}=\frac{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}}{28 \mathrm{~kg} / \mathrm{mol}} \times 10^{3}$ $\mathrm{R}_{n}=0.297 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ Calculate the temperature of the gas using the Ideal gas equation. $P=\rho R_{n} T$ Here, $P$ is the pressure, $\rho$ is the density and $T$ is the temperature. Substitute $400 \mathrm{kPa}$ for $\mathrm{P}, 0.297 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ for $\mathrm{R}_{n}$ and $4 \mathrm{~kg} / \mathrm{m}^{3}$ for $\rho$. $400=4 \times 0.297 \times T$ $T=336.7 \mathrm{~K}$ Convert the temperature into degrees Celsius. $T=336.7-273$ $T=63.7^{\circ} \mathrm{C}$ Therefore, the temperature of nitrogen is $63.7{ }^{\circ} \mathrm{C}$.

Work Step by Step

Calculate the characteristics gas constant of nitrogen using the formula, $\mathrm{R}_{n}=\frac{\mathrm{R}}{\mathrm{M}}$ Here, $\mathrm{R}_{n}$ is the characteristics gas constant of nitrogen, $\mathrm{R}$ is universal gas constant and $\mathrm{M}$ is molecular weight of nitrogen. Substitute $8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ for $\mathrm{R}, 28 \mathrm{~kg} / \mathrm{kmol}$ for $\mathrm{M}$. $\mathrm{R}_{n}=\frac{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}}{28 \mathrm{~kg} / \mathrm{kmol}}$ $\mathrm{R}_{n}=\frac{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}}{28 \mathrm{~kg} / \mathrm{mol}} \times 10^{3}$ $\mathrm{R}_{n}=0.297 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ Calculate the temperature of the gas using the Ideal gas equation. $P=\rho R_{n} T$ Here, $P$ is the pressure, $\rho$ is the density and $T$ is the temperature. Substitute $400 \mathrm{kPa}$ for $\mathrm{P}, 0.297 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ for $\mathrm{R}_{n}$ and $4 \mathrm{~kg} / \mathrm{m}^{3}$ for $\rho$. $400=4 \times 0.297 \times T$ $T=336.7 \mathrm{~K}$ Convert the temperature into degrees Celsius. $T=336.7-273$ $T=63.7^{\circ} \mathrm{C}$ Therefore, the temperature of nitrogen is $63.7{ }^{\circ} \mathrm{C}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.