Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version 8th Edition

Published by Wiley
ISBN 10: 1119080703
ISBN 13: 978-1-11908-070-1

Chapter 1 - Problems - Page 32: 1.44

Answer

Conversions: $$ \begin{array}{l} 1 \text { in. }=\frac{1}{12} \mathrm{ft} \\ T_{\mathrm{o}_{\mathrm{R}}}=\left(T_{\mathrm{o} \mathrm{F}}+460\right){ }^{\circ} \mathrm{R} \end{array} $$ $1 \mathrm{lb} / \mathrm{in}^{2}=12^{2} \mathrm{lb} / \mathrm{ft}^{2}$ Calculate the volume of basketball: $$ V=\frac{4}{3} \pi r^{3} $$ Here, $r$ is the radius of basketball. Substitute $4.67 \times \frac{1}{12} \mathrm{ft}$ for $r$. $$ \begin{aligned} V &=\frac{4}{3} \pi\left(4.67 \times \frac{1}{12}\right)^{3} \\ &=0.24676 \mathrm{ft}^{3} \end{aligned} $$ Calculate the mass of the air using ideal gas equation. $P V=m R T$ Here, $R$ gas constant and $T$ is the temperature. Substitute $24 \times\left(12^{2}\right) \mathrm{lb} / \mathrm{ft}^{2}$ for $P, 1716 \mathrm{ft} \times \mathrm{lb} / \mathrm{slug} \times{ }^{\circ} \mathrm{R}$ for $R,(70+460)^{\circ} R$ for $T$, and $0.24676 \mathrm{ft}^{3}$ for $V$ $24\left(12^{2}\right) \times 0.24676=m \times 1716 \times(70+460)$ $m=9.38 \times 10^{-4}$ slugs Therefore, the mass of the air to inflate the basketball is $9.38 \times 10^{-4}$ slugs

Work Step by Step

Conversions: $$ \begin{array}{l} 1 \text { in. }=\frac{1}{12} \mathrm{ft} \\ T_{\mathrm{o}_{\mathrm{R}}}=\left(T_{\mathrm{o} \mathrm{F}}+460\right){ }^{\circ} \mathrm{R} \end{array} $$ $1 \mathrm{lb} / \mathrm{in}^{2}=12^{2} \mathrm{lb} / \mathrm{ft}^{2}$ Calculate the volume of basketball: $$ V=\frac{4}{3} \pi r^{3} $$ Here, $r$ is the radius of basketball. Substitute $4.67 \times \frac{1}{12} \mathrm{ft}$ for $r$. $$ \begin{aligned} V &=\frac{4}{3} \pi\left(4.67 \times \frac{1}{12}\right)^{3} \\ &=0.24676 \mathrm{ft}^{3} \end{aligned} $$ Calculate the mass of the air using ideal gas equation. $P V=m R T$ Here, $R$ gas constant and $T$ is the temperature. Substitute $24 \times\left(12^{2}\right) \mathrm{lb} / \mathrm{ft}^{2}$ for $P, 1716 \mathrm{ft} \times \mathrm{lb} / \mathrm{slug} \times{ }^{\circ} \mathrm{R}$ for $R,(70+460)^{\circ} R$ for $T$, and $0.24676 \mathrm{ft}^{3}$ for $V$ $24\left(12^{2}\right) \times 0.24676=m \times 1716 \times(70+460)$ $m=9.38 \times 10^{-4}$ slugs Therefore, the mass of the air to inflate the basketball is $9.38 \times 10^{-4}$ slugs
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.