Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version 8th Edition

Published by Wiley
ISBN 10: 1119080703
ISBN 13: 978-1-11908-070-1

Chapter 1 - Problems - Page 32: 1.43

Answer

Consider the following assumptions: 1. Density of the air, $\rho_{\text {air }}=1 \mathrm{~kg} / \mathrm{m}^{3}$. 2. Density of the water, $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$. 3. Radius of the rain droplet can be determined based on the capillarity. Calculate the percentage by which air water mixture density is greater than that of just still air. $$ \begin{aligned} \frac{\text { Air-water density }}{\text { Air density }} &=\frac{\rho_{\text {air }}\left(K_{\text {air }}-K_{\text {droplets }}\right)+\rho_{\text {droplets }} K_{\text {dropless }}}{\rho_{\text {air }} K_{\text {air }}} \\ &=\frac{\rho_{\text {air }}\left(\frac{4}{3} \pi R^{3}-N \frac{4}{3} \pi r^{3}\right)+\rho_{\text {droplees }}\left(N \frac{4}{3} \pi r^{3}\right)}{\rho_{\text {air }}\left(\frac{4}{3} \pi R^{3}\right)} \end{aligned} $$ Here, $K$ is the volume, $R$ is the arbitrary radius of the still air sphere, $r$ is the radius of the rain droplet, and $N$ is the number of droplets in the air water mixture sphere. Simplify the above equation to get the ratio in only two parameters that is the number of rain droplets and the radius of the arbitrary volume. $$ \begin{aligned} \frac{\text { Air-water density }}{\text { Air density }} &=\frac{\rho_{\text {air }}\left(\frac{4}{3} \pi R^{3}-N \frac{4}{3} \pi r^{3}\right)+\rho_{\text {droplets }}\left(N \frac{4}{3} \pi r^{3}\right)}{\rho_{\text {air }}\left(\frac{4}{3} \pi R^{3}\right)} \\ &=\frac{\rho_{\text {air }}\left(R^{3}-r^{3} N\right)+\rho_{\text {dropless }} N r^{3}}{\rho_{\text {air }} R^{3}} \\ &=1-\frac{r^{3} N}{R^{3}}+\frac{\rho_{\text {dropless }} N r^{3}}{\rho_{\text {air }} R^{3}} \end{aligned} $$ Here, the only inputs to be substituted are the number of rain droplets per arbitrary volume, and radius of the arbitrary volume, and $r$ can be estimated using capillarity of water.

Work Step by Step

Consider the following assumptions: 1. Density of the air, $\rho_{\text {air }}=1 \mathrm{~kg} / \mathrm{m}^{3}$. 2. Density of the water, $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$. 3. Radius of the rain droplet can be determined based on the capillarity. Calculate the percentage by which air water mixture density is greater than that of just still air. $$ \begin{aligned} \frac{\text { Air-water density }}{\text { Air density }} &=\frac{\rho_{\text {air }}\left(K_{\text {air }}-K_{\text {droplets }}\right)+\rho_{\text {droplets }} K_{\text {dropless }}}{\rho_{\text {air }} K_{\text {air }}} \\ &=\frac{\rho_{\text {air }}\left(\frac{4}{3} \pi R^{3}-N \frac{4}{3} \pi r^{3}\right)+\rho_{\text {droplees }}\left(N \frac{4}{3} \pi r^{3}\right)}{\rho_{\text {air }}\left(\frac{4}{3} \pi R^{3}\right)} \end{aligned} $$ Here, $K$ is the volume, $R$ is the arbitrary radius of the still air sphere, $r$ is the radius of the rain droplet, and $N$ is the number of droplets in the air water mixture sphere. Simplify the above equation to get the ratio in only two parameters that is the number of rain droplets and the radius of the arbitrary volume. $$ \begin{aligned} \frac{\text { Air-water density }}{\text { Air density }} &=\frac{\rho_{\text {air }}\left(\frac{4}{3} \pi R^{3}-N \frac{4}{3} \pi r^{3}\right)+\rho_{\text {droplets }}\left(N \frac{4}{3} \pi r^{3}\right)}{\rho_{\text {air }}\left(\frac{4}{3} \pi R^{3}\right)} \\ &=\frac{\rho_{\text {air }}\left(R^{3}-r^{3} N\right)+\rho_{\text {dropless }} N r^{3}}{\rho_{\text {air }} R^{3}} \\ &=1-\frac{r^{3} N}{R^{3}}+\frac{\rho_{\text {dropless }} N r^{3}}{\rho_{\text {air }} R^{3}} \end{aligned} $$ Here, the only inputs to be substituted are the number of rain droplets per arbitrary volume, and radius of the arbitrary volume, and $r$ can be estimated using capillarity of water.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.