Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version 8th Edition

Published by Wiley
ISBN 10: 1119080703
ISBN 13: 978-1-11908-070-1

Chapter 1 - Problems - Page 32: 1.24

Answer

$$ 49700 \frac{\mathrm{ft}^{2}}{\mathrm{s}^{2} \circ \mathrm{R}}=8310 \frac{\mathrm{m}^{2}}{\mathrm{s}^{2} \circ \mathrm{K}} $$

Work Step by Step

$\begin{aligned} \mathrm{R}_{0} &=\left[49700 \frac{\mathrm{ft}^{2}}{\mathrm{s}^{2} \circ \mathrm{R}}\right] \\ &=\left[49700 \frac{\mathrm{ft}^{2}}{\mathrm{s}^{2} \circ \mathrm{R}}\right]\left[0.0928 \frac{\mathrm{m}^{2}}{\mathrm{ft}^{2}}\right]\left[0.556 \frac{\circ \mathrm{R}}{\circ\mathrm{K}}\right] \\ &=\left[49700 \frac{\mathrm{m}^{2}}{\mathrm{s}^{2} \circ \mathrm{R}}\right]\left[0.0928 \frac{\mathrm{m}^{2}}{\mathrm{ft}^{2}}\right]\left[\frac{9}{5} \frac{ \circ \mathrm{R}}{\circ \mathrm{K}}\right] \\ & \approx 8310 \frac{\mathrm{m}^{2}}{\mathrm{s}^{2} \circ \mathrm{K}} \\ & \therefore 49700 \frac{\mathrm{ft}^{2}}{\mathrm{s}^{2} \circ \mathrm{R}}=8310 \frac{\mathrm{m}^{2}}{\mathrm{s}^{2} \circ \mathrm{K}} \end{aligned}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.