Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version 8th Edition

Published by Wiley
ISBN 10: 1119080703
ISBN 13: 978-1-11908-070-1

Chapter 1 - Problems - Page 32: 1.34

Answer

$$F_{E G} =1128 \frac{k g}{m^{3}}$$

Work Step by Step

$\text{in our case we can apply the law of linearity}$ $\begin{aligned} \rho_{\operatorname{mix}} &=\rho_{H_{2}} O \frac{50 \%}{100 \%}+\rho_{E G} \frac{50 \%}{100 \%} \\ 1064 \frac{k g}{m^{3}} &=1000 \frac{k g}{m^{3}} \cdot 0.5+F_{E G} \frac{k g}{m^{3}} \cdot 0.5 \\ \Longrightarrow & F_{E G}=\frac{1064-500}{0.5} \frac{k g}{m^{3}} \\ F_{E G} &=1128 \frac{k g}{m^{3}} \end{aligned}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.