Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version 8th Edition

Published by Wiley
ISBN 10: 1119080703
ISBN 13: 978-1-11908-070-1

Chapter 1 - Problems - Page 32: 1.29

Answer

$$\gamma =9327 \frac{\mathrm{N}}{\mathrm{m}^{3}} $$

Work Step by Step

$\begin{array}{l}{\text { The density of the } " \rho^{\prime \prime}=\frac{w}{v}} \\ {\qquad \begin{aligned} &=\frac{(4)[\text { ounces }]\left[0.0283 \frac{K g}{\text { ounces }}\right]}{[1.25 \text { in. }][1.25 \mathrm{in} .][4.65 \mathrm{in} .]\left[(0.0254)^{3} \frac{\mathrm{m}^{3}}{\mathrm{in.}^{3}}\right]} \\ &=\frac{(4)[\text { ounees }]\left[0.0283 \frac{K g}{\text { aunees }}\right]}{[1.25 \mathrm{in} .][4.65 \mathrm{in} .]\left[(0.0254)^{3} \frac{\mathrm{m}^{3}}{\mathrm{in.}^{8}}\right]} \end{aligned}} \\ \quad \quad \quad =950.763 \frac{\mathrm{Kg}}{\mathrm{m}^{3}} \end{array}$ $\begin{aligned} \text { The specific weight } " \gamma^{\prime \prime} &=\rho \cdot g \\ &=950.763 * 9.81 \\ &=9327 \frac{\mathrm{N}}{\mathrm{m}^{3}} \end{aligned}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.