Answer
Let us assume the following:
The length of bath tub be $l=1.5 \mathrm{ft}$
The width of the bath tub be $b=0.6 \mathrm{ft}$
The height of the bath tub be $h=0.3 \mathrm{ft}$
Thus calculate the volume of the bath tub.
$$
\begin{aligned}
V &=1.5 \mathrm{ft} \times 0.6 \mathrm{ft} \times 0.3 \mathrm{ft} \\
&=0.27 \mathrm{ft}^{3}
\end{aligned}
$$
Now the weight of the bath tub can expressed as follows:
$$
\begin{array}{l}
W=m g \\
\quad=(\rho V) g \\
\quad=V(\rho g) \\
=V \gamma_{H g} \ldots \ldots(1)
\end{array}
$$
Here, density of mercury is $\rho$, volume of the bath tub is $V$, specific weigh of mercury is $\gamma_{H g}$ and $W$ is the weight of the bath tub.
Substitute $0.27 \mathrm{ft}^{3}$ for $V$ and $847 \mathrm{lb} / \mathrm{ft}^{3}$ for $\gamma_{H g}$ in equation (1).
$$
\begin{aligned}
W &=V \gamma_{H g} \\
&=0.27 \times 847 \\
&=228.7 \mathrm{lb}
\end{aligned}
$$
Therefore, the amount of mercury required to fill the bath tub is $228.7 \mathrm{lb}$.
Work Step by Step
Let us assume the following:
The length of bath tub be $l=1.5 \mathrm{ft}$
The width of the bath tub be $b=0.6 \mathrm{ft}$
The height of the bath tub be $h=0.3 \mathrm{ft}$
Thus calculate the volume of the bath tub.
$$
\begin{aligned}
V &=1.5 \mathrm{ft} \times 0.6 \mathrm{ft} \times 0.3 \mathrm{ft} \\
&=0.27 \mathrm{ft}^{3}
\end{aligned}
$$
Now the weight of the bath tub can expressed as follows:
$$
\begin{array}{l}
W=m g \\
\quad=(\rho V) g \\
\quad=V(\rho g) \\
=V \gamma_{H g} \ldots \ldots(1)
\end{array}
$$
Here, density of mercury is $\rho$, volume of the bath tub is $V$, specific weigh of mercury is $\gamma_{H g}$ and $W$ is the weight of the bath tub.
Substitute $0.27 \mathrm{ft}^{3}$ for $V$ and $847 \mathrm{lb} / \mathrm{ft}^{3}$ for $\gamma_{H g}$ in equation (1).
$$
\begin{aligned}
W &=V \gamma_{H g} \\
&=0.27 \times 847 \\
&=228.7 \mathrm{lb}
\end{aligned}
$$
Therefore, the amount of mercury required to fill the bath tub is $228.7 \mathrm{lb}$.