Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version 8th Edition

Published by Wiley
ISBN 10: 1119080703
ISBN 13: 978-1-11908-070-1

Chapter 1 - Problems - Page 32: 1.25

Answer

$\frac{P}{\rho V^{2}}=\frac{M L^{-1} T^{-2}}{\left(M L^{-3}\right)\left(L T^{-1}\right)^{2}}$ "adding and subtracting exponents". $=(M)^{(1-1)}(L)^{(-1+3-2)}(T)^{(-2+2)}$ $=M^{0} L^{0} T^{0} \Rightarrow$ "Dimensionless" $\frac{V x}{\nu}=\frac{\left(L T^{-1}\right)(L)}{L^{2} T^{-1}}$ "Adding and subtracting exponents". $=(L)^{(1+1-2)}(T)^{(-1+1)}$ $=L^{0} T^{0} \Rightarrow$ "Dimensionless" $f T=(T)^{-1}(T)$ "Adding and subtracting exponents" $=T^{0} \Rightarrow$ 'Dimensionless" $\frac{a T}{V}=\frac{\left(L T^{-2}\right)(T)}{L T^{-1}}$ "Adding and subtracting exponents". $=(L)^{(1-1)}(T)^{(-2+1+1)}$ $=L^{0} T^{0} \Rightarrow$ "Dimensionless" $\frac{a x}{\left(L T^{-1}\right)^{2}}$ "Adding and subtracting exponents". $=(L)^{(1+1-2)}(T)^{(2-2)}$ $=L^{0} T^{0} \Rightarrow$ "Dimensionless".

Work Step by Step

$\frac{P}{\rho V^{2}}=\frac{M L^{-1} T^{-2}}{\left(M L^{-3}\right)\left(L T^{-1}\right)^{2}}$ "adding and subtracting exponents". $=(M)^{(1-1)}(L)^{(-1+3-2)}(T)^{(-2+2)}$ $=M^{0} L^{0} T^{0} \Rightarrow$ "Dimensionless" $\frac{V x}{\nu}=\frac{\left(L T^{-1}\right)(L)}{L^{2} T^{-1}}$ "Adding and subtracting exponents". $=(L)^{(1+1-2)}(T)^{(-1+1)}$ $=L^{0} T^{0} \Rightarrow$ "Dimensionless" $f T=(T)^{-1}(T)$ "Adding and subtracting exponents" $=T^{0} \Rightarrow$ 'Dimensionless" $\frac{a T}{V}=\frac{\left(L T^{-2}\right)(T)}{L T^{-1}}$ "Adding and subtracting exponents". $=(L)^{(1-1)}(T)^{(-2+1+1)}$ $=L^{0} T^{0} \Rightarrow$ "Dimensionless" $\frac{a x}{\left(L T^{-1}\right)^{2}}$ "Adding and subtracting exponents". $=(L)^{(1+1-2)}(T)^{(2-2)}$ $=L^{0} T^{0} \Rightarrow$ "Dimensionless".
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.