Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version 8th Edition

Published by Wiley
ISBN 10: 1119080703
ISBN 13: 978-1-11908-070-1

Chapter 1 - Problems - Page 32: 1.40

Answer

Substituting the values of $C_{2}$ and $C_{3}$ in equation (1) $998.2=C_{1}+(0.005) \times 20+(-0.005) \times 400$ $998.2=C_{1}+0.1-2$ $998.2=C_{1}=1.9$ $C_{1}=998.2+1.9$ $C_{1}=1000.1$ $\rho=1000.1+0.005 T-0.005 T^{2}$ At $T=42.1^{\circ} \mathrm{C}$ $\rho=C_{1}+C_{2} T-C_{2} T^{2}$ $\rho=1000.1+0.005 \times 42.1-0.005 \times 42.1^{2}$ $\rho=1000.1+0.2105-8.86205$ $\rho=991.45 \mathrm{~kg} / \mathrm{m}^{3}$

Work Step by Step

The empirical equation $\rho=C_{1}+C_{2} T+C_{3} T^{2}$ Where $C_{1}, C_{2}, C_{3}$ are constant Considering density $=998.2$ at $20^{\circ} \mathrm{C}$ Considering density $=997.1$ at $25^{\circ} \mathrm{C}$ $997.1=C_{1}+C_{2} 25+C_{3} 625$ Subtracting equation (2) from equation (1) $$ \begin{array}{ll} 1.1=-5 C_{2}-225 C_{3} & --(3) \end{array} $$ Considering density $=995.7$ at $30^{\circ} \mathrm{C}$ $995.7=C_{1}+C_{2} 30+C_{3} 900 \quad--(4)$ Considering density $=994.1$ at $35^{\circ} \mathrm{C}$ $\begin{array}{ll}994.1=C_{1}+C_{2} 35+C_{3} 1225 & --(5)\end{array}$ Subtracting equation (5) from equation (4) $1.6=-5 C_{2}-325 C_{3} \quad--(6)$ Subtracting equation (3) from equation (6) $$ 0.5=-325 C_{3}-\left(-225 C_{3}\right) $$ $0.5=-325 C_{3}+225 C_{3}$ $0.5=-100 C_{3}$ $C_{3}=-\frac{0.5}{100}$ $C_{3}=-0.005$ Substituting $C_{3}=-0.005$ in equation (6) $1.6=-5 C_{2}-325(-0.005)$ $1.6=-5 C_{2}+1.625$ $5 C_{2}=1.625-1.6$ $C_{2}=\frac{0.025}{5}$ $C_{2}=0.005$ Substituting the values of $C_{2}$ and $C_{3}$ in equation (1) $998.2=C_{1}+(0.005) \times 20+(-0.005) \times 400$ $998.2=C_{1}+0.1-2$ $998.2=C_{1}=1.9$ $C_{1}=998.2+1.9$ $C_{1}=1000.1$ $\rho=1000.1+0.005 T-0.005 T^{2}$ At $T=42.1^{\circ} \mathrm{C}$ $\rho=C_{1}+C_{2} T-C_{2} T^{2}$ $\rho=1000.1+0.005 \times 42.1-0.005 \times 42.1^{2}$ $\rho=1000.1+0.2105-8.86205$ $\rho=991.45 \mathrm{~kg} / \mathrm{m}^{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.