Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version 8th Edition

Published by Wiley
ISBN 10: 1119080703
ISBN 13: 978-1-11908-070-1

Chapter 1 - Problems - Page 32: 1.38

Answer

Given data Weight of oxygen in tank at sea level $W=1 \mathrm{lb}$ The acceleration due to gravity at sea level $\mathrm{g}_{\mathrm{sea}}=32.174 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$ The acceleration due to gravity at the top of the Everest $g_{\text {top }}=32.082 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$ We know that Weight $=$ mass $\times$ acceleration due to gravity $W=m g$ $W_{\text {sealevel }}=m_{\text {sealevel }} \times g_{\text {sea level }}$ And $W_{\text {top }}=m_{\text {top }} \times g_{\text {top }}$ But mass of any substance remains same anywhere i.e, $m_{\text {sea level }}=m_{\text {top }}$ $\frac{W_{\text {sea level }}}{g_{\text {sea level }}}=\frac{W_{\text {top }}}{g_{\text {top }}}$ $W_{\text {top }}=\frac{1 \times 32.082}{32.174}$ $W_{\text {top }}=0.997 \mathrm{lb}$ $\therefore$ Weight at the top of Everest $0.997 \mathrm{lb}$

Work Step by Step

Given data Weight of oxygen in tank at sea level $W=1 \mathrm{lb}$ The acceleration due to gravity at sea level $\mathrm{g}_{\mathrm{sea}}=32.174 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$ The acceleration due to gravity at the top of the Everest $g_{\text {top }}=32.082 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$ We know that Weight $=$ mass $\times$ acceleration due to gravity $W=m g$ $W_{\text {sealevel }}=m_{\text {sealevel }} \times g_{\text {sea level }}$ And $W_{\text {top }}=m_{\text {top }} \times g_{\text {top }}$ But mass of any substance remains same anywhere i.e, $m_{\text {sea level }}=m_{\text {top }}$ $\frac{W_{\text {sea level }}}{g_{\text {sea level }}}=\frac{W_{\text {top }}}{g_{\text {top }}}$ $W_{\text {top }}=\frac{1 \times 32.082}{32.174}$ $W_{\text {top }}=0.997 \mathrm{lb}$ $\therefore$ Weight at the top of Everest $0.997 \mathrm{lb}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.