Answer
(a)
$$0.0757 \frac{\mathrm{m}^{3}}{\mathrm{s}} $$
_____________________________________________________
(b)
$$4542.5 \frac{\text { liters }}{\min } $$
_____________________________________________________
(c)
$$2.673 \frac{\mathrm{ft}^{3}}{\mathrm{s}} $$
Work Step by Step
(a)
$\begin{aligned} \text { flow rate } &=\left[1200 \frac{\mathrm{gal}}{\min }\right]\left[0.003785 \frac{\mathrm{m}^{3}}{\mathrm{gal}}\right]\left[\frac{1}{60} \frac{\mathrm{min}}{\mathrm{s}}\right] \\ &=\left[1200 \frac{\mathrm{gal}}{\min }\right]\left[0.003785 \frac{\mathrm{m}^{3}}{\mathrm{gal}}\right]\left[\frac{1}{60} \frac{\mathrm{mim}}{\mathrm{s}}\right] \\ &=0.0757 \frac{\mathrm{m}^{3}}{\mathrm{s}} \end{aligned}$
_____________________________________________________
(b)
$\begin{aligned} \text { flow rate } &=\left[1200 \frac{\mathrm{gal}}{\min }\right]\left[3.78541 \frac{\text { liter }}{\text { gal }}\right] \\ &=\left[1200 \frac{\mathrm{gal}}{\min }\right]\left[3.78541 \frac{\text { liter }}{\mathrm{gal}}\right] \\ &=4542.5 \frac{\text { liters }}{\min } \end{aligned}$
_____________________________________________________
(c)
$\begin{aligned} \text { flow rate } &=\left[0.0757 \frac{\mathrm{m}^{3}}{\mathrm{s}}\right]\left[35.3147 \frac{\mathrm{ft}^{3}}{\mathrm{m}^{3}}\right] \\ &=\left[0.0757 \frac{\mathrm{m}^{3}}{\mathrm{s}}\right]\left[3.78541 \frac{\mathrm{f} \frac{\mathrm{f}^{3}}{\mathrm{m}^{3}}}{\mathrm{m}^{8}}\right] \\ &=2.673 \frac{\mathrm{ft}^{3}}{\mathrm{s}} \end{aligned}$