Answer
See step by step work for the answer.
Work Step by Step
Bitwise OR equals 1 if and only if at least one bit in the expression equals 1.
Bitwise AND equals 1 if and only if both bits in the expression equal 1.
Bitwise XOR equals 1 if and only if one bit in the expression is 1, and the other one 0.
Knowing that, we can solve the problems:
a)
$1011110 \lor$
$0100001=$
$1111111$
$1011110 \land$
$0100001=$
$0000000$
$1011110 \oplus$
$0100001=$
$1111111$
b)
$11110000 \lor$
$10101010=$
$11111010$
$11110000 \land$
$10101010=$
$10100000$
$11110000 \oplus$
$10101010=$
$01011010$
c)
$0001110001 \lor$
$1001001000=$
$1001111001$
$0001110001 \land$
$1001001000=$
$0001000000$
$0001110001 \oplus$
$1001001000=$
$1000111001$
d)
$1111111111 \lor$
$0000000000=$
$1111111111$
$1111111111 \land$
$0000000000=$
$0000000000$
$1111111111 \oplus$
$0000000000=$
$1111111111$