Answer
44. Evaluate each of these expressions.
a) 1 1000 $\land$ (0 1011 $\vee$ 1 1011)
Answer: 1 1000
b) (0 1111 $\land$ 1 0101) $\vee$ 0 1000
Answer: 0 1101
c) (0 1010 $\oplus$ 1 1011) $\oplus$ 0 1000
Answer: 1 1001
d) (1 1011 $\vee$ 0 1010) $\land$ (1 0001 $\vee$ 1 1011)
Answer: 1 1011
Work Step by Step
There are three operations involved in this problem
$\land$(AND), $\vee$(OR), and $\oplus$(XOR)
AND is only true when both propositions are true, so
false $\land$ false = false
false $\land$ true = false
true $\land$ false = false
true $\land$ true = true
OR is true when either, or both of the propositions are true, so
false $\vee$ false = false
false $\vee$ true = true
true $\vee$ false = true
true $\vee$ true = true
XOR(also known as Exclusive Or) is true when, either, but not both of the propositions are true, so
false $\oplus$ false = false
false $\oplus$ true = true
true $\oplus$ false = true
true $\oplus$ true = false
The result of these operations remain the same when we substitute 0 for false, and 1 for true.
When we then extend bits into bit strings, we can then apply bitwise OR, bitwise AND, and bitwise XOR.
So for part
a) 1 1000 $\land$ (0 1011 $\vee$ 1 1011), we must first do the bitwise operation
0 1011 $\vee$ 1 1011
to do so, we line up the bits
0 1011
1 1011
and apply $\vee$ to each vertical pair of bits, resulting in
1 1011
which we can then use to finish the evaluation of the expression
1 1000 $\land$
1 1011 =
1 1000, which is the result of evaluating the whole expression
Our next steps for the following problems are apply similarly
b) (0 1111 $\land$ 1 0101) $\vee$ 0 1000
0 1111 $\land$
1 0101 =
0 0101
0 0101 $\vee$
0 1000 =
0 1101 (The Answer)
c) (0 1010 $\oplus$ 1 1011) $\oplus$ 0 1000
0 1010 $\oplus$
1 1011 =
1 0001
1 0001 $\oplus$
0 1000 =
1 1001 (The Answer)
d) (1 1011 $\vee$ 0 1010) $\land$ (1 0001 $\vee$ 1 1011)
1 1011 $\vee$
0 1010 =
1 1011
1 0001 $\vee$
1 1011 =
1 1011
(1 1011 $\vee$ 0 1010) $\land$ (1 0001 $\vee$ 1 1011) = 1 1011 $\land$ 1 1011
1 1011 $\land$
1 1011 =
1 1011 (The Answer)