Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 1 - Section 1.1 - Propositional Logic - Exercises - Page 16: 44

Answer

44. Evaluate each of these expressions. a) 1 1000 $\land$ (0 1011 $\vee$ 1 1011) Answer: 1 1000 b) (0 1111 $\land$ 1 0101) $\vee$ 0 1000 Answer: 0 1101 c) (0 1010 $\oplus$ 1 1011) $\oplus$ 0 1000 Answer: 1 1001 d) (1 1011 $\vee$ 0 1010) $\land$ (1 0001 $\vee$ 1 1011) Answer: 1 1011

Work Step by Step

There are three operations involved in this problem $\land$(AND), $\vee$(OR), and $\oplus$(XOR) AND is only true when both propositions are true, so false $\land$ false = false false $\land$ true = false true $\land$ false = false true $\land$ true = true OR is true when either, or both of the propositions are true, so false $\vee$ false = false false $\vee$ true = true true $\vee$ false = true true $\vee$ true = true XOR(also known as Exclusive Or) is true when, either, but not both of the propositions are true, so false $\oplus$ false = false false $\oplus$ true = true true $\oplus$ false = true true $\oplus$ true = false The result of these operations remain the same when we substitute 0 for false, and 1 for true. When we then extend bits into bit strings, we can then apply bitwise OR, bitwise AND, and bitwise XOR. So for part a) 1 1000 $\land$ (0 1011 $\vee$ 1 1011), we must first do the bitwise operation 0 1011 $\vee$ 1 1011 to do so, we line up the bits 0 1011 1 1011 and apply $\vee$ to each vertical pair of bits, resulting in 1 1011 which we can then use to finish the evaluation of the expression 1 1000 $\land$ 1 1011 = 1 1000, which is the result of evaluating the whole expression Our next steps for the following problems are apply similarly b) (0 1111 $\land$ 1 0101) $\vee$ 0 1000 0 1111 $\land$ 1 0101 = 0 0101 0 0101 $\vee$ 0 1000 = 0 1101 (The Answer) c) (0 1010 $\oplus$ 1 1011) $\oplus$ 0 1000 0 1010 $\oplus$ 1 1011 = 1 0001 1 0001 $\oplus$ 0 1000 = 1 1001 (The Answer) d) (1 1011 $\vee$ 0 1010) $\land$ (1 0001 $\vee$ 1 1011) 1 1011 $\vee$ 0 1010 = 1 1011 1 0001 $\vee$ 1 1011 = 1 1011 (1 1011 $\vee$ 0 1010) $\land$ (1 0001 $\vee$ 1 1011) = 1 1011 $\land$ 1 1011 1 1011 $\land$ 1 1011 = 1 1011 (The Answer)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.