Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 1 - Solving Linear Equations - 1.1 - Solving Simple Equations - Exercises - Page 10: 53

Answer

$12\pi\; in.^2$.

Work Step by Step

The given values are Volume $V=84\pi\; in.^3$ Height $h=7\;in.$ Area of the base. $\Rightarrow B=\pi r^2 $ Volume of the cylinder is $\Rightarrow V=\pi r^2 h$ Substitute all the values. $\Rightarrow 84\pi\; in.^3=\pi r^2 (7\;in.)$ Divide both sides by $(7\;in.)$. $\Rightarrow \frac{84\pi\; in.^3}{(7\;in.)}=\frac{\pi r^2 (7\;in.)}{(7\;in.)}$ Cancel common terms. $\Rightarrow 12\pi\; in.^2=\pi r^2$ $\Rightarrow 12\pi\; in.^2=B$ Hence, the area of the cylinder is $12\pi\; in.^2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.