Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 1 - Solving Linear Equations - 1.3 - Solving Equations with Variables on Both Sides - Exercises - Page 24: 32

Answer

$x=4.5$ $\text{Surface area}\approx183\,ft^{2}$ $\text{Volume}\approx183\,ft^{3}$

Work Step by Step

$\text{Surface area}=2\pi r^{2}+2\pi rh$ $\text{Volume}=\pi r^{2}h$ Here, $r$ is the radius and $h$ is the height of the cylinder. Given: $\text{Surface area}=\text{Volume}$ $\implies 2\pi r^{2}+2\pi r h=\pi r^{2}h$ Dividing both sides of the above equation by $\pi r$, we get $2r+2h=rh$ $\text{Diameter } 2r=7\frac{1}{5}\,ft=\frac{36}{5}\,ft$ $r=\frac{1}{2}\times\frac{36}{5}\,ft=3.6\,ft$ $h=x\,ft$ Substituting these values, we have $\frac{36}{5}+2x=3.6x$ $\implies \frac{36}{5}=3.6x-2x=1.6\,x$ $\implies x=\frac{36}{5\times1.6}=4.5$ $\text{Surface area}=2\pi(3.6)^{2}+2\pi(3.6)(4.5)$ $\approx183\,ft^{2}$ $\text{Volume}=\pi(3.6)^{2}(4.5)\approx183\,ft^{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.