Answer
$37$
Work Step by Step
$\displaystyle \frac{1}{2}n(n+1)=703\quad/\times 2$
$n^{2}+n=1406$
$n^{2}+n-1406=0$
$a=1,b=-1,c--1406$
$n=\displaystyle \frac{-1\pm\sqrt{1+4(1)(1406)}}{2} =\frac{-1\pm 75}{2}$
Discarding the negative,
$n=\displaystyle \frac{-1+75}{2}=37$