Answer
$\sqrt[12]{m}$
Work Step by Step
Using $\sqrt[n]{x^m}=x^{\frac{m}{n}}$ and the laws of exponents. the given expression, $
\sqrt[4]{\sqrt[3]{m}}
,$ is equivalent to
\begin{array}{l}\require{cancel}
\sqrt[4]{m^{\frac{1}{3}}}
\\\\=
\left( m^{\frac{1}{3}} \right)^{\frac{1}{4}}
\\\\=
m^{\frac{1}{3}\cdot\frac{1}{4}}
\\\\=
m^{\frac{1}{12}}
\\\\=
\sqrt[12]{m^1}
\\\\=
\sqrt[12]{m}
.\end{array}