Answer
$\displaystyle \begin{array}{ c l }
a) & \mathrm{The\ area\ of\ the\ largest\ square\ is} \ ( x+y)^{2}\\
b) & \mathrm{The\ area\ of\ the\ largest\ square\ is} \ x^{2} +y^{2} +xy+xy=x^{2} +2xy+y^{2}\\
c) & \mathrm{The\ expressions\ in\ parts\ } a\ \mathrm{and} \ b\ \mathrm{are\ equivalent\ because\ they\ both\ represent\ the\ same\ area}\\
d) & ( x+y)^{2} =x^{2} +2xy+y^{2}
\end{array}$
Work Step by Step
$\displaystyle \begin{array}{|c|l|}
\hline
a) & \begin{array}{{>{\displaystyle}l}}
\mathrm{The\ formula\ for\ Area\ of\ a\ square\ is} \ A\ =\ s^{2} \ \mathrm{where} \ s \mathrm{\space represents\ the\ length}\\
\mathrm{\ of\ one\ side\ of\ a\ square.\ In\ this\ case,\ define} \ s\ =\ x\ +\ y.\ \mathrm{Then} :\\
A\ =\ ( x\ +\ y)^{2}
\end{array}\\
& \\
\hline
b) & \begin{array}{{>{\displaystyle}l}}
\mathrm{In\ this\ case,\ the\ area\ of\ the\ largest\ square\ is\ the\ sum\ of\ the\ four\ smaller}\\
\mathrm{figures\ having\ the\ same\ area\ as\ the\ largest\ square.} \ \\
\\
\begin{array}{ c l }
x^{2} & \mathrm{is\ the\ area\ of\ the\ larger\ blue\ shaded\ squqre}\\
y^{2} & \mathrm{is\ the\ area\ of\ the\ smaller\ blue\ shaded\ square}\\
xy & \mathrm{is\ the\ area\ of\ the\ yellow\ shaded\ rectangle}\\
xy & \mathrm{is\ the\ area\ of\ the\ orange\ shaded\ rectange}
\end{array}\\
\\
\mathrm{Summing\ the\ areas\ gives} :\\
\begin{array}{ c l }
A & =x^{2} +y^{2}\\
& =x^{2} +2xy+y^{2}
\end{array}
\end{array}\\
& \\
\hline
c) & \begin{array}{{>{\displaystyle}l}}
\mathrm{The\ expressions\ in\ parts\ } a\ \mathrm{and} \ b\ \mathrm{are\ equivalent\ because\ they\ both\ represent}\\
\mathrm{\ the\ same\ area} .\mathrm{We\ can\ show\ this\ algebraically\ by\ setting\ the\ expressions\ for}\\
a\ \mathrm{and} \ b\ \mathrm{equal\ to\ each\ other}\\
\\
\begin{array}{ r l l }
( x+y)^{2} & =x^{2} +2xy+y^{2} & \mathrm{Set\ the\ areas\ of} \ a\ \mathrm{and} \ b\ \mathrm{equal}\\
& & \\
( x+y)( x+y) & =x^{2} +2xy+y^{2} & \mathrm{Expand} \ ( x+y)^{2}\\
& & \\
x( x+y) +y( x+y) & =x^{2} +2xy+y^{2} & \mathrm{Apply\ the\ distributive\ property}\\
& & \\
x^{2} +xy+xy+y^{2} & =x^{2} +2xy+y^{2} & \\
& & \\
x^{2} +2xy+y^{2} & =x^{2} +2xy+y^{2} & \begin{array}{{>{\displaystyle}l}}
\mathrm{Both\ sides\ are\ equal,\ therefore}\\
\mathrm{the\ expressions\ must\ be\ equivalent}
\end{array}
\end{array}
\end{array}\\
& \\
\hline
d) & ( x+y)^{2} =x^{2} +2xy+y^{2}\\
\hline
\end{array}$