Answer
$\begin{array}{ l }
\begin{array}{{l}}
\mathrm{The\ equation} \ x( y+z) =xy+xz \mathrm{\space \\is\ an\ application\ of\ the\ distributive\ property\ which\ shows\ that}\\
\mathrm{the\ area\ of\ the\ largest\ rectangle\ is\ equivalent\ to\ the\ sum\ of\ the\ areas\ of\ the\ smaller\ rectangles.}
\end{array}
\end{array}$
Work Step by Step
$\begin{array}{ l }
\begin{array}{{l}}
\mathrm{The\ area\ of\ the\ largest\ rectangle\ is\ equivalent\ to\ the\ sum\ of\ the\ areas\ of\ the\ two\ }\\
\mathrm{smaller\ rectangles.From\ the\ given\ figure\ we\ can\ observe\ that\ the\ area\ of\ the\ }\\
\mathrm{largest\ rectangle\ is} \ x( y+z).\\
\\
\mathrm{The\ area\ of\ the\ larger\ figure\ is} \ xy.\ \mathrm{The\ area\ of\ the\ }\\
\mathrm{smaller\ figure\ is} \ xz.\ \mathrm{The\ sum\ of\ the\ two\ smaller\ figures\ is} \ xy\ +\ xz.\
\\
\\ \mathrm{To\ show\ that\ }
\mathrm{the} \ \mathrm{area\ of\ the\ largest\ rectangle\ is\ indeed\ the\ sum\ of\ the\ two\ smaller\ rectangles} \ \\
\mathrm{we\ can\ take\ the\ expression\ for\ the\ largest\ rectangle\ and\ apply\ the\ distributive\ }\\
\mathrm{property} \ \mathrm{as\ follows} :
\\
\\
\ x( y+z) \ =\ xy+xz
\\
\\
\mathrm{which\ is\ equivalent\ to\ the\ expression\ }\\
\mathrm{for\ the\ sum\ of\ the\ two\ smaller\ figures.\ }
\end{array}
\end{array}$