Answer
$\text{The simplified form of the given expression is }k^{2/3}$.
Work Step by Step
$\begin{array}{ l l }
=\dfrac{k^{1/3} \cdot k}{k^{2/3}} & \begin{array}{l}
\mathrm{Apply\ the\ rule}\\
\dfrac{1}{a^{-n}} =a^{n}
\end{array}\\
& \\
=\dfrac{k^{\frac{1}{3}+1}}{k^{2/3}} & \begin{array}{l}
\mathrm{Apply\ the\ rule}\\
a^{b} \cdot a^{c} =a^{b+c}
\end{array}\\
& \\
=\dfrac{k^{\frac{1}{3}+\frac{3}{3}}}{k^{2/3}} & \mathrm{Express} \ 1\ \mathrm{as\ } \frac{3}{3}.\\
& \\
=\dfrac{k^{4/3}}{k^{2/3}} & \mathrm{Add\ Exponents}\\
& \\
=k^{4/3-2/3} & \begin{array}{l}
\mathrm{Apply\ the\ rule}\\
\dfrac{a^{m}}{a^{n}} =a^{m-n}
\end{array}\\
& \\
=k^{2/3} & \mathrm{Subtract\ exponents}
\end{array}$