College Algebra (11th Edition)

Published by Pearson
ISBN 10: 0321671791
ISBN 13: 978-0-32167-179-0

Chapter R - Section R.6 - Rational Exponents - R.6 Exercises - Page 58: 113

Answer

$4$

Work Step by Step

$\bf{\text{Solution Outline:}}$ To simplify the given expression, $ 0.2^{2/3}\cdot40^{2/3} ,$ use the laws of exponents. $\bf{\text{Solution Details:}}$ Using the extended Power Rule of the laws of exponents which is given by $\left( x^my^n \right)^p=x^{mp}y^{np},$ the expression above is equivalent to \begin{array}{l}\require{cancel} (0.2\cdot40)^{2/3} \\\\= 8^{2/3} .\end{array} Using the definition of rational exponents which is given by $a^{\frac{m}{n}}=\sqrt[n]{a^m}=\left(\sqrt[n]{a}\right)^m,$ the expression above is equivalent to \begin{array}{l}\require{cancel} (\sqrt[3]{8})^{2} \\\\= (2)^{2} \\\\= 4 .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.