Answer
$r^{-5/3} \left( 6r-5 \right)$
Work Step by Step
Factoring out the given factor, $
r^{-5/3}
,$ then the given expression, $
6r^{-2/3}-5r^{-5/3}
,$ is equivalent to
\begin{array}{l}\require{cancel}
r^{-5/3} \left( \dfrac{6r^{-2/3}}{r^{-5/3}}-\dfrac{5r^{-5/3}}{r^{-5/3}} \right)
\\\\=
r^{-5/3} \left( 6r^{-\frac{2}{3}-\left(-\frac{5}{3}\right)}-5r^{-\frac{5}{3}-\left(-\frac{5}{3}\right)} \right)
\\\\=
r^{-5/3} \left( 6r^{-\frac{2}{3}+\frac{5}{3}}-5r^{-\frac{5}{3}+\frac{5}{3}} \right)
\\\\=
r^{-5/3} \left( 6r^{\frac{3}{3}}-5r^{0} \right)
\\\\=
r^{-5/3} \left( 6r^{1}-5(1) \right)
\\\\=
r^{-5/3} \left( 6r-5 \right)
.\end{array}