College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.3 - Page 51: 139

Answer

4

Work Step by Step

$\sqrt (13 + \sqrt 2 + \frac{7}{3 + \sqrt 2})$ ........(1) To simplify first rationalize $\frac{7}{3 + \sqrt 2} $ To rationalize the denominator multiply the numerator and denominator by the conjugate of $3 + \sqrt 2$. The conjugate of $3 + \sqrt 2$ is $3 - \sqrt 2$ $\frac{7}{3 + \sqrt 2} \times \frac{3 - \sqrt 2}{3 - \sqrt 2}$ $= \frac{7(3 - \sqrt 2)}{(3 + \sqrt 2)(3 - \sqrt 2)}$ $( \sqrt a - \sqrt b)( \sqrt a + \sqrt b)$ = $ (\sqrt a)^{2}$ - $ (\sqrt b)^{2}$. Therefore, $( 3 + \sqrt 2)( 3 - \sqrt 2)$ = $ (3^{2})-(\sqrt 2^{2})$. $= \frac{7(3 - \sqrt 2)}{(3^{2})-(\sqrt 2^{2})}$ $= \frac{7(3 - \sqrt 2)}{9-2}$ $= \frac{7(3 - \sqrt 2)}{7}$ $=3 - \sqrt 2$ Substitute this value in Equation (1) $\sqrt (13 + \sqrt 2 + 3 - \sqrt 2)$ $\sqrt (13 + 3 + \sqrt 2 - \sqrt 2)$ $\sqrt 16$ $ = 4 $ $ = 4 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.