Answer
$\frac{2x+6}{x+1}$
Work Step by Step
To multiply, change the second term to its reciprocal. Then factor all parts of each term, and then multiply and divide out common values. To finish, recombine the numerator.
$\frac{2x+8}{x-3}\div\frac{x^2+5x+4}{x^2-9}$
$\frac{2x+8}{x-3}\times\frac{x^2-9}{x^2+5x+4}$
$\frac{2(x+4)}{x-3}\times\frac{(x+3)(x-3)}{(x+4)(x+1)}$
$\frac{2(x+4)(x+3)(x-3)}{(x-3)(x+4)(x+1)}$
$\frac{2(x+3)}{x+1}$
$\frac{2x+6}{x+1}$