Answer
$\frac{2x + 3}{(x + 3)^{\frac{3}{5}}}$ = $(x + 3)^{-\frac{3}{5}}$($2x + 3$)
Work Step by Step
Simplification
$x(x + 3)^{-\frac{3}{5}}$ + $(x + 3)^{\frac{2}{5}}$
= $\frac{x}{(x + 3)^{\frac{3}{5}}}$ + $(x + 3)^{\frac{2}{5}}$
= $\frac{x + [(x + 3)^{\frac{2}{5}}{(x + 3)^{\frac{3}{5}}}]}{(x + 3)^{\frac{3}{5}}}$
= $\frac{x + (x + 3)^{\frac{2}{5} +\frac{3}{5}}}{(x + 3)^{\frac{3}{5}}}$
= $\frac{x + (x + 3)^{\frac{5}{5}}}{(x + 3)^{\frac{3}{5}}}$
= $\frac{x + (x + 3)}{(x + 3)^{\frac{3}{5}}}$
= $\frac{x + x + 3}{(x + 3)^{\frac{3}{5}}}$
= $\frac{2x + 3}{(x + 3)^{\frac{3}{5}}}$
Simplification of given expression = $\frac{2x + 3}{(x + 3)^{\frac{3}{5}}}$