Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.2 Basic Ideas and Terminology - Problems - Page 21: 19

Answer

Answer attached below.

Work Step by Step

$y''-(a+b)y'+aby=0$ _____($\alpha$) $y=C_{1} e^{ax}+C_{2}e^{bx}$ ______(1) Differentiate (1) with respect to $x$ $y'=aC_{1} e^{ax}+bC_{2}e^{bx}$ ______(2) Differentiate (2) with respect to $x$ $y''=a^2C_{1} e^{ax}+b^2C_{2}e^{bx}$ ______(3) $-(a+b)y'=-(a+b)[aC_{1} e^{ax}+bC_{2}e^{bx}]$ $-(a+b)y'= -a^2C_{1}e^{ax}-abC_{2}e^{bx}-abC_{1}e^{ax}-b^2C_{2}e^{bx}$ ____(4) $aby=abC_{1} e^{ax}+abC_{2}e^{bx}$ ____(5) Adding (3),(4) and (5) $y''-(a+b)y'+aby =a^2C_{1} e^{ax}+b^2C_{2}e^{bx}-a^2C_{1}e^{ax}-abC_{2}e^{bx}-abC_{1}e^{ax}-b^2C_{2}e^{bx}+abC_{1} e^{ax}+abC_{2}e^{bx} =0$ Hence, $y=C_{1} e^{ax}+C_{2}e^{bx}$ is solution of ($\alpha$)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.