Answer
$r=-3$
Work Step by Step
$y''+6y'+9y=0$ ______($\alpha$)
$y=e^{rx}$ ______(1)
Differentiate (1) with respect to $x$
$y'=re^{rx}$ ______(2)
Differentiate (2) with respect to $x$
$y''=r^2e^{rx}$ ______(3)
Since $y=e^{rx}$ is solution of ($\alpha$) so it satisfies ($\alpha$)
$r^2e^{rx}+6re^{rx}+9e^{rx}=0$
$e^{rx}[r^2+6r+9]=0$
$e^{rx}\neq 0$
Therefore, $r^2+6r+9=0$
$(r+3)^2=0$
$r=-3$
Hence, $r=-3$