Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.2 Basic Ideas and Terminology - Problems - Page 21: 20

Answer

Given below.

Work Step by Step

On derivating the equation $y=e^(ax)\cdot(c_1+c_2x)$ $y'=ae^(ax)\cdot(c_1+c_2x)+e^(ax)\cdot(0+c_2)$ $y'=(e^(ax))[a\cdot(c_1+c_2x)+(c_2)]$ On again derivating $y''=ae^(ax)[a\cdot(c_1+c_2x)+(c_2)]+e^(ax)[a\cdot(0+c_2)+(0)]$ $y''=(e^(ax))\cdot[ac_1+c_2x+ac_2]$ On putting these valves in equation $y''-2ay'+a^2y=0$ , we get $(e^(ax))\cdot[ac_1+c_2x+ac_2]-2a(e^(ax))[a\cdot(c_1+c_2x)+(c_2)]+a^2e^(ax)\cdot(c_1+c_2x)=0$ $(e^(ax))\cdot[ac_1+c_2x+ac_2-2a^2(c_1+c_2x)-2ac_2+a^2(c_1+c_2x)=0$ $0=0$ Hence it is true for all real values of $x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.