Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.4 Separable Differential Equations - Problems - Page 43: 11

Answer

\[y(x)=C+C_{1}\ln\left|\frac{x-a}{x-b}\right|^\frac{1}{(a-b)}\]

Work Step by Step

$$(x-a)(x-b)y'-(y-c)=0$$ $$y'=\frac{dy}{dx}=\frac{y-c}{(x-a)(x-b)}$$ Separating variables \[\frac{dy}{y-c}=\frac{dx}{(x-a)(x-b)}\] Integrating, \[\int\frac{dy}{y-c}=\int\frac{dx}{(x-a)(x-b)}+C_{1}\] Where $C_{1}$ is constant of integration $\int\frac{dy}{y-c}=\frac{1}{(a-b)}\int\left(\frac{1}{x-a}-\frac{1}{x-b}\right)dx+C_{1}$ $\ln|y-c|=\frac{1}{(a-b)}[\ln|x-a|-\ln|x-b|]+C_{1}$ \[\ln|y-c|=\frac{1}{(a-b)}\ln\left|\frac{x-a}{x-b}\right|+C_{1}\] \[y(x)=C+C_{1}\ln\left|\frac{x-a}{x-b}\right|^\frac{1}{(a-b)}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.