Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.4 Separable Differential Equations - Problems - Page 43: 14

Answer

\[2\cos x\cos y=1\]

Work Step by Step

$\frac{dy}{dx}=1-\frac{\sin(x+y)}{\sin y\cos x}$ ___(1) $\frac{dy}{dx}=1-\frac{\sin x\cos y+\sin y\cos x}{\sin y\cos x}$ $\frac{dy}{dx}=1-\frac{\tan x}{\tan y}+1=\frac{-\tan x}{\tan y}$ Separating variablea, $-\tan y\;dy=\tan x \;dx$ Integrating, $-\int\tan y\;dy=\int\tan x \;dx+\ln C$ $\ln C$ is constant of integration $\ln|\cos y|=-\ln|\cos x|+\ln|C|$ $\ln|\cos x\cos y|=\ln|C|$ $\cos x\cos y=C$ ___(2) Using initial condition $y\left(\frac{π}{4}\right)=\frac{π}{4}$ $\frac{1}{\sqrt{2}}.\frac{1}{\sqrt{2}}=\frac{1}{2}=C$ (2) becomes \[2\cos x\cos y=1\] Hence solution of (1) is $2\cos x\cos y=1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.