Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.4 Separable Differential Equations - Problems - Page 43: 12

Answer

$y(x) = \tan{(\frac{\pi}{4}-\tan^{-1}{x})}$

Work Step by Step

Given the equation $$(x^2+1)y'+y^2=-1$$ with an initial value $$y(0)=1$$ Rewrite $y'$ as $\frac{dy}{dx}$ and isolate variables to each side: $$(x^2+1)\frac{dy}{dx}=-y^2-1$$ $$\frac{dy}{-y^2-1}=\frac{dx}{x^2+1}$$ $$-\frac{dy}{y^2+1}=\frac{dx}{x^2+1}$$ Integrate both sides: $$-\int{\frac{dy}{y^2+1}}=\int{\frac{dx}{x^2+1}}$$ $$-\tan^{-1}{y}=\tan^{-1}{x}+C$$ Plug in initial values and solve for $C$: $$-\tan^{-1}{(1)}=\tan^{-1}{(0)}+C$$ $$-\frac{\pi}{4}=0+C$$ $$C=-\frac{\pi}{4}$$ Solve the equation for $y$: $$-\tan^{-1}{y}=\tan^{-1}{x}-\frac{\pi}{4}$$ $$\tan^{-1}{y}=\frac{\pi}{4}-\tan^{-1}{x}$$ $$y=\tan{\left(\frac{\pi}{4}-\tan^{-1}{x}\right)}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.