Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.6 First-Order Linear Differential Equations - Problems - Page 60: 28

Answer

See below

Work Step by Step

Given: $T_m=80e^{-\frac{t}{20}}\\k=\frac{1}{40}$ Apply Newton's cooling law, we have: $\frac{dT}{dt}=-k_1(T-A+B\cos \omega t)+A_0\\ \frac{dT}{dt}+k_1T=A_0+k_1A-k_1B\cos \omega t$ Since this is a linear equation whose solution can be given by: $T=e^{-\int k_1dt}(c_1+\int e^{-\int k_1dt}(A_0+k_1A-k_1B\cos \omega t)dt)\\ T=c_1e^{-k_1t}+e^{-k_1t}\int e^{k_1t}(A_0+k_1A-k_1B\cos \omega t)dt\\ T=c_1e^{-k_1t}+\frac{A_0}{k_1}+\frac{Bk_1(k_1\cos(t\omega)+\omega\sin(t\omega))}{k_1^2+\omega^2}$ We are given $T(0)=T_0$, then $T(0)=\frac{A_0}{k_1}+A+\frac{B\omega^2}{k_1^2+\omega^2}-B+c_1=0\\ \rightarrow c_1=-\frac{A_0}{k_1}+A-\frac{B\omega^2}{k_1^2+\omega^2}+B+T_0$ Hence, the complete solution is: $T(t)=(-\frac{A_0}{k_1}+A-\frac{B\omega^2}{k_1^2+\omega^2}+B+T_0)e^{-k_1t}+\frac{A_0}{k_1}+A-\frac{Bk_1(k_1\cos(t\omega)+\omega\sin(t\omega))}{k_1^2+\omega^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.