Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.6 First-Order Linear Differential Equations - Problems - Page 60: 29

Answer

See below

Work Step by Step

Given: $y_H(x)=c_1e^{-\int p(x)dx}$ a) Obtain: $y'_H(x)=c_1e^{-\int p(x)dx}\frac{d}{dx}(-\int p(x)dx)\\ =-c_1p(x)e^{-\int p(x)dx}$ We have: $y'_H(x)+p(x)y_H(x)\\=-c_1p(x)e^{-\int p(x)dx}+p(x)c_1e^{-\int p(x)dx}\\=0$ The integration factor is: $I(x)=e^{\int p(x)dx}$ Multiply equation by integrating factor: $e^{\int p(x)dx}y'+ye^{\int p(x)dx}=0\\ \rightarrow \frac{d}{dx}(ye^{\int p(x)dx})=0\\ \rightarrow c_1=ye^{\int p(x)dx}\\ \rightarrow y_H(x)=c_1e^{-\int p(x)dx}$ b) Given: $y(x)=u(x)e^{-\int p(x)dx}$ then $y'+p(x)y\\=u'(x)e^{-\int p(x)dx}+u(x)e^{-\int p(x)dx}(-p(x))+p(x)u(x)e^{-\int p(x)dx}\\ =u'(x)e^{-\int p(x)dx}$ Let $q(x)=u'(x)e^{-\int p(x)dx}$ Thus, $q(x)=u'(x)e^{-\int p(x)dx}\\ \rightarrow u(x)=\int q(x)e^{\int p(x)dx}dx$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.