Answer
Reduced row-echelon matrix that is row-equivalent to the
given matrix is:
\begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix}
Work Step by Step
Apply elementary row operations to find the reduced row-echelon matrix that is row-equivalent to the given matrix:
\begin{bmatrix} 1&2 \\ -1&2 \end{bmatrix}
$R_{1}+R_{2} \to R_{2}$
\begin{bmatrix} 1&2 \\ 0&4 \end{bmatrix}
$ \frac{1}{4} R_{2} \to R_{2}$
\begin{bmatrix} 1&2 \\ 0&1 \end{bmatrix}
$-2R_{2} + R_{1} \to R_{2}$
\begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix}