Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 1 - Systems of Linear Equations - 1.2 Gaussian Elimination and Gauss-Jordan Elimination - 1.2 Exercises - Page 24: 58

Answer

$a.\:False\\b.\:False\\c.\:True\\d.\:False$

Work Step by Step

$a.\:False,\\By\:definition,\:a\:m×n\:matrix\:has\:m\:rows\:and\:n\:columns.\:Therefore\:a\:4×7\:matrix\:has\:4\:rows\:and\:7\:columns.\\b.\:False,\\Examine\:the\:two\:matrices:\:\:\\\begin{bmatrix}1&2\\ -1&2\end{bmatrix},\:\:\:\begin{bmatrix}1&3\\ -1&3\end{bmatrix}\\Both\:reduce\:to\:\:\:\begin{bmatrix}1&0\\ 0&1\end{bmatrix}\\c.\:True,\\By\:definition,\:a\:system\:is\:consistent\:if\:there\:is\:at\:least\:one\:solution.\:A\:homogenous\:system\:always\:has\:the\:zero\:solution.\\d.\:False,\\One\:of\:the\:elementary\:row\:operations\:is\:being\:able\:to\:multiply\:by\:a\:non-zero\:constant.\:Since\:zero\:is\:a\:constant,\:and\:we\:cannot\:multiply\:a\:row\:by\:zero,\:this\:statement\:is\:false.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.